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Abstract. In this paper we deal with %—spinor fields in the framework of the non-abelian
Klein-Kaluza theory. We introduce a dimensional reduction procedure for a %—spinor
field and a generalisation of the minimal coupling scheme. We get dipole electric moments
for a 3-spin particle of value 1073 ¢m and PC breaking for a gauge group G with odd
parameters. Reflections in higher (additional) dimensions were proposed as a conjugation
of ‘colour’ charges connected with Yang-Mills fields. Our approach avoids the Velo-
Zwanziger paradox (acausal propagation in an external gauge field).

1. Introduction

In this paper we deal with 3-spinor fields in the framework of non-abelian Klein-Kaluza
theories. On an (n +4)-dimensional manifold P (metrised fibre bundle) we have
introduced one-form spinor fields. These forms are horizontal (in the sense of a
connection on the bundle P) and take values from the fundamental representation of
the group SO(1, n +3) (Spin (1, n +3)).

We assume that this one-form spinor field depends on the group coordinates in a
trivial way, i.e. by the action of the group G (G is a gauge group of the Yang-Mills
field which we combine with gravity in the Klein—Kaluza framework). We introduce
for this one-form spinor field a new kind of gauge derivative. These gauge derivatives
were defined in Kalinowski (1981a, b, e) in the five-dimensional (electromagnetic) case
and in Kalinowski (1981c) for the %-spinor field in the non-abelian case. Here we
generalise this approach.

Simultaneously we define a dimensional reduction procedure for the one-form
spinor field. It contains three steps:

(1) we take a section of the bundle P and apply it for a one-form spinor field ¥;

(2) we restrict the group SO(1, n +3) to SO(1, 3) for ¥;

(3) we decompose ¥ to one-form spinor fields with values from the Dirac rep-
resentation of SL(2, C).

After that we get a tower of one-form spinor fields on a space-time E.

We have treated here the 3-spinor field as a one-form with values in the Dirac
representation of SL.(2, C) similarly as in Kalinowski (1981b), Isenburg et al (1977).
In Kalinowski (1981a,b,e) a similar construction for the one-dimensional
(electromagnetic) case was introduced. Here we clarify this construction as a kind of
dimensional reduction. In Kalinowski (1981b) we presented a similar construction
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for the 7-spinor field. Next we generalise a minimal coupling scheme for a one-form
spinor field ¥. We define on the (n +4)-dimensional manifold a Lagrangian form
as in Kalinowski (1981b), Isenburg et al (1977). In this Lagrangian we construct a
new gauge derivative for the one-form spinor field ¥. This procedure is a simple
generalisation of that of Kalinowski (1981b, ), Isenburgetal (1977). Inthe Lagrangian
new terms appear similar to that of Kalinowski (1981b, e), Isenburg (1977).
In Kalinowski (1981b, e) such a term was interpreted as the interaction of the dipole
electric moment of a fermion with the electromagnetic field. Here the interpretation
is more complex. If we perform the dimensional reduction procedure, we get on E
(space—time) a sum of Lagrangians for all 3 fermions from a tower describing the
interaction of these fermions with gravity and Yang-Mills fields in a classical, already
known way, plus new terms. These new terms describe interactions of the Yang-Mills
fields with 3-spin fermions from a tower. If the number of group parameters is odd
(dim G=n =2/+1) some of these terms may be interpreted as the interaction of
dipole electric moments of fermions with the electromagnetic field. For an even
number of parameters of the group G (dim G =n = 2/) such terms are absent. Thus
a dipole electric moment of a fermion is possible only in the case of an even number
of parameters of the group G. But apart from these terms we also have other terms.
These terms may be treated as anomalous dipole moments for ‘magnetic’ parts of
the Yang-Mills field. For an even number of group parameters we have a PC breaking.
This breaking is obviously very small because the value of the dipole electric moments
of %-spin fermions is about 107! (cm)q. Similarly as in Kalinowski (1981b, c, e) this
value depends on fundamental constants only.

We also consider the Velo-Zwanziger (1969) paradox. It is very well known that
a minimal coupling scheme is not well defined for the 3-spinor field. The Rarita—
Schwinger equation is relativistic covariant, but solutions are acausal.

The last property is related to the fact that differential consequences for the
Rarita-Schwinger equation become algebraic constraints (Velo and Zwanziger 1969).
These constraints depend on the strength of the electromagnetic (or Yang-Mills)
field. In this paper we generalise the minimal coupling scheme and use the differential
forms formalism for the Rarita-Schwinger field. Hence we obtain new terms. These
terms are some ‘interference’ effects due to the gravitational and Yang-Mills fields
interacting with the 3-spinor field. The existence of these new terms has important
consequences. Due to this, the first differential consequences for the Rarita-Schwinger
equation are differential equations. We do not get any algebraic constraints depending
on the Yang-Mills field. Hence the Velo-Zwanziger paradox is avoided.

In this paper we also define discrete transformations on P and interpret them as
operators of parity, time reversal, charge conjugations, PC and PCT. Charge conjuga-
tions are defined as reflections in » additional dimensions (gauge dimensions).

The paper is organised as follows. In §2 we describe some elements of the
non-abelian Klein-Kaluza theory and define geometric quantities which we use
throughout the paper. In § 3 we deal with the dimensional reduction procedure for
the 3-spinor field. In § 4 we introduce a generalisation of the minimal coupling scheme
for the 3-spinor field. We get new terms in the Lagrangian and interpret them. In
§ 5 we discuss the Velo-Zwanziger paradox and prove that it is absent in our case.
In § 6 we define a discrete transformation on the manifold P. The appendix is devoted
to elements of the Clifford algebra which we use in the paper.

Finally we would like to give some remarks concerning § 2 in particular, but also
important for the whole paper. We employ the concept of a principal fibre bundle
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P, as a base for another principal bundle P'. This is a general idea of the Klein-Kaluza
theory. We make P a (pseudo)Riemannian space by defining a metric tensor y on
P. This is equivalent to defining a metric connection (choice of horizontal subspace
of T,(P"), A.u € P') in the principal bundle P'—the bundle of linear frames over P as
a base. The structure group for P is G (the gauge group for the Yang-Mills field),
while the structure group for P’ is GL(n +4, R), reducible to SO(1, n +3) (n =dim G).
In this case we have two operators of horizontality ‘hor’ and ‘hor;’. The first is referred
to P and the second to P’. Thus this might lead to a misunderstanding. For this
reason we use throughout the paper only one operator of horizontality, ‘hor’, with
respect to a connection on P (none on P'!). Simultaneously we use a classical linear
metric connection on P as a (pseudo)Riemannian manifold. Due to this all consider-
ations are simpler. Nevertheless there also exists in the theory a third principal bundle
P" with a base E (space-time) and the structural group GL(4, R) reducible to SO(1, 3)
(Lorentz group). This is the bundle of linear frames over E as a base. Thus appears
the third operator of horizontality ‘hor,’ referred to P”. For simplicity we also use
on E a classical linear metric (Riemannian) connection. From the physical point of
view, the author believes that the most important structure here is a gauge structure
connecting to the Yang-Mills field, i.e. the principal fibre bundle P. The remaining
structures, the metric tensor and linear connections, are some derivations from this
fundamental residual structure. In this way the first operator of horizontality ‘hor’
plays a fundamental role. This concept is developed in the paper.

2. The Klein—-Kaluza theory

Let us introduce the principal fibre bundle P over the space-time E with the structural
group G and the projection 7, and let w be a connection form on P. Let us suppose
that (E, g) is a manifold with a metric tensor g and Riemann connection @,s, where

g = 8.50" ® 6°. The signature of g is (— ——+) and §* is a frame on E. Let us introduce
the natural frame on P:
64 = (7*(6%), 8° = Aw?), A = constant. 2.1

w = w"X, is a connection on P. (w” are dual to fundamental fields on P.) The two-form
of curvature of connection w is

Q =hordw =3H%,6“ 7 8°X,, X, € ® the Lie algebraof G.  (2.2)
) obeys the structural Cartan equation:

Q=dw +3w, ] (2.3)
Bianchi’s identity for w is

hor dQ) =0. (2.4)

The map e: E> U —P, so that eon =id is called a cross section. From the physical
point of view it means choosing the gauge. Thus

e*w=e*(wX,) = A%6"X,

L (2.5)
e*Q=e*(Q°X,) =3F2,6" A 8 X,

where
Fﬁu =3uA‘:—3»Az+CZcAZAi- (26)
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X, a=1,2,...,dim G=n are generators of the Lie algebra of the group G, &, and
[Xas Xb] = szch-
A covariant derivation on P with respect to w, d, is defined as follows

d;¥ =hord¥ (hor is understood in the sense of w). 2.7

This derivation is called ‘gauge’ derivation, where ¥ is for example a one-form field
(with values in spinor space) on P. Itis convenient to introduce the following notations.
Capital Latin indices A, B, Crun 1,2,3,4,...,n+4, dim G=n. Lower case Greek
indices a, B, v, =1, 2, 3, 4 and lower case Latin g, b,¢,d =5,6,...,n+4. The bar
over 6% and wag (i.6. 6%, @.s) indicates that both quantities are defined on E.

Let us now introduce a tensor y = y456” ®8® on the manifold P in the natural
way (Trautman 1970, 1971, 1981). Let X, Y € T...(P).

(X, Y)=g(#', X, 7'Y)+hau8°(X)6°(Y)
or (2.8)
y=m*g+ha,0°®6°

The tensor vy has signature (———+=—"++-=). ha = C,C% is a Killing tensor on G.
This tensor has the form n times
8ap 0 >
= . 2.9
YAB ( 0 PR (2.9)

It is clear that the frame 6” is partially unholonomic, because

dg® =A(Q°—3072C5.6° A 6°) % 0. (2.10)
We also introduce a dual frame

¥(£a) = vanb”. (2.11)
We have &4 = (£, £,) and according to Trautman (1970)

ay=0. (2.12)

Thus &, are Killing vectors of metric y.
Let us now define the Riemann connection wag on P and covariant derivative D
with respect to wap (P is treated as a base of P'):

(D,)ap =0 and D6*=0. (2.13)
The solution of (2.13) is
Wag = 71'*((5,,3) - %AHaBaG a’ Wap = ~WphHy = = %/\Ha‘ybo 'y’

1 (2.14)
Wap = —Wpa = —(2A) Cabcoc-

wap is invariant with respect to the action of the group G (Trautman 1970). In the
Klein-Kaluza theory A =2¢vG/c?, e2=1, where G is the gravitational constant and
c is the velocity of light in a vacuum. This condition originated from consistency
between equations in the Klein-Kaluza theory and Einstein’s equation (Kaluza 1921,
Lichnerowicz 1955a, Cho 1975). It is worth noting that this condition does not
determine the sign of A. It was unnoticed in Kalinowski (1981a, e).
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Now we define the dual Cartan base on E. Let 11234 = (—det g)l/ 2

Levi-Civita symbol and

Na = %0_3 A g—‘y A e_anaﬁy& n= %éd A Na- (2'15)

and 746, be a

Details concerning the elements of geometry mentioned here can be found in Trautman
(1970, 1971, 1980), Kobayashi and Nomizu (1963) and Lichnerowicz (1955b).

3. 3 spinors and dimensional reduction
Let us consider the group SO(1, n +3) and its fundamental (complex) representation
of dimension K =4 x 2"/}, where [n/2]=1for n =2l or 2/ +1
U(g)¢(X)=D"(g)d(g"'X)
X eM®m*d, g€S0O(1,n+3).

SO(1, n +3) acts linearly in M n*3) ((n +4)-dimensional Minkowski space).
Let ¥ be the one-form with values in spinor space of a fundamental representation
of SO(1, n+3) (Spin(1, n +3)) defined on M"* (Minkowski space). Thus we have

(¥, X)=¢x¢c St (fundamental representation of Spin(1, n +3)) (3.2)

(3.1

X e Tan(M™?). We call ¥ a one-spinor form.
After restriction of g to the subgroup SO(1, 3) we obtain a decomposition of DF
(Barut and Raczka 1977)

DF (A)=L(A) @@ L(A), AeSO(1, 3),
1SO(1, 3) N——’ (3 3)
22 times ’
where
LA =D"*?(0)@D?(A).
is the Dirac representation of SO(1, 3).
The decomposition (3.2) of the one-spinor form ¥ has the form
U
‘I’|SO<1,3) = d’ (3.4)
(ﬂz[.n/z]
where ¢, i = 1,2, ..., 2" are one-spinor forms belonging to the Dirac representation

(L=D"Y*®D®V?y  Thus, due to the decomposition (3.3) we get a tower of
one-spinor forms.

More precisely, we deal with representations of Spin(1, n +3) and Spin(1, 3) =
SL(2,C). Let us turn to a manifold P. It is a metric manifold (P, y) with a metric
tensor y. At every point p € P a tangent space T, (P)=M'"""*, Let ¥ be a horizontal
one-form spinor field defined on P. Then

(¥, X):P—>C¥, K =4x2"?, (¥, ver(X)) =0, X € tan(P).
For the one-form spinor field ¥ we suppose the following action of the group G:

U(pg:) =S(gi " )W¥(p) (3.5)
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where p=(x,g)eP, g, g.€G. © is a representation of the group G in 4x
2™2)_dimensional complex space, x€ P. If we take a section e: E — P we get aone-form
spinor field W(e(x)) on the manifold E (space-time). Thus at every point x € E we
have after restriction to SO(1, 3) the one-spinor form Wiso,3, and for this the
decomposition (3.4) is valid. Thus

¢1(x)
(e*‘l’)lsou,a)(x) = d/z:(X) . (3.6)

;pzw.z](x)

One-form spinor fields ¢i(x), i=1,2,..., 22} are one-form spinor fields at every
point x € E belonging to the Dirac representation L = D'®"?@®D"*?, We will call
such a procedure the dimensional reduction for one-form spinor fields. In this way
we have a tower of one-form spinor fields on E. The following graph symbolises this:

¥
e restriction decomposition ljjz
R4 e*vy ) ————
section of P from SO(1, n+3) [sO(1, 3) .
to SO(1, 3) :
(//2[7./21/

In Kalinowski (1981a, 1982) we dealt in a similar context, with the five-dimensional
(electromagnetic) case (G=U(1), n = 1). Thus we have the de Sitter group SO(1, 4),
and we dealt with the one-form spinor ¥ belonging to the fundamental representation
of the group Spin(1, 4)=Sp(2, 2). But for this case we have dim DF =dim Dfo.s)
and after dimensional reduction we get only one one-form spinor field on E. The
procedure (3.7) explains a construction given in Kalinowski (1981b, e). It is easy to
see that

Y=v,6" and = U, 0%, i=1,2,..., w2,

Thus the one-form ¢; describes the %-spinor field on E (Deser and Zumino 1976),
¥ unifies a tower of one-forms i, i.e. a tower of 3-spinor fields. (In Isenburg er al
(1977) it was pointed out that 3-spinor fields on E should be treated as one-form
spinor fields.)

4., %-spinor field on P

Let ¥ be a one-form spinor field on P belonging to the fundamental representation
DF of SO(1, n +3) (Spin(1, n +3)), and let I*, A=1,2,...,n+4 be a representation
of generators of the Clifford algebra for SO(1, n + 3) acting in the space representation
of DF (i.e. "€ C(1, n +3))

{T'a, T5}=2Zas, I*eg(c"), K =4x2"%, [n/2]=1, 4.1)

where gap =diag(—1, -1, ~1,1,-1... —1). We introduce a one-form spinor field ¥
n times

¥=¢'B 4.2)

where + is Hermitian conjugation and
r**=BIr°B~. (4.3)
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It is easy to see that

V(pg.) =TV (p)S(g1) (4.4)

where pe (X, g)e P, g, g:€G, S is a unitary representation of the group G acting in
4% 2" _dimensional complex space, Se£(C*). The one-form fields ¥ and ¥ are
defined on P and P is assumed to have an orthogonal coordinate system 6. This
coordinate system is in general non-holonomic.

We perform an infinitesimal change of frame 6

0% =0"+80%=6"~¢56° eap+epa=0. 4.5)
Suppose that the field ¥ corresponds to 8* and ¥' to §*'; then we obtain
V=U+s¥=V-s5&,5¥, V=T+8V=0+TS,pe"", (4.6)

where @AB =%[FA, FB]
Now we consider covariant exterior derivatives of one form spinor fields ¥ and
V¥ on P with respect to wap. We obtain

DV =d¥+ & AT, DU =d¥— P A V&S 5. (4.7)

In Kalinowski (1981b, e) we introduced a new kind of ‘gauge’ derivative for the
five-dimensional case. Now we generalise the approach to an arbitrary gauge group
G:

DV =hor D¥ =d,¥+hor(w*®)S 45 1 ¥,

- - - - (4.8)
PV =hor DV =d, ¥ —hor(w”®) A TS 45.
Horizontality is understood in the sense of a connection w on a bundle P.
Using (2.14) one obtains
V=PV - gAH* [T, T,10" AV, V=PV +3AH* 0" A V[T, T,], (4.9
where _ _ L _
PV =hor DV, PW¥=hor DV. (4.10)

D is an exterior covariant derivative with respect to @ap (on E). & is the normal gauge
derivative and generally covariant derivative with respect to @.g. It describes the well
known minimal coupling scheme between the 3-spinor field, gravitational field and
Yang-Mills field.

It is easy to see that these new ‘gauge’ derivatives induce on P a new connection
(P is understood as a base of P')

¢3A3=hor(wAB). (411)

We work with @& 4p rather than with wap. In Kalinowski (1981b, e), due to these
gauge derivatives one got the dipole electric moment of the fermion and avoided well
known troubles (Thirring 1972). (Planck’s mass term in Dirac’s equation). The
connection wap has many interesting features. In Kalinowski (1981d) it was proved
that a scalar of curvature for @p is the sum of scalars of curvature for @,z (on E)
and — A %h, F*“*F?, (the Lagrangian of the Yang-Mills field for the gauge group G).

For wap we get in addition an enormous cosmological term (Cho 1975). For the
3-spinor field on E we have the Lagrangian four-form (Isenburg et al 1977, Kalinowski
1981b).

L32(, &, d) =3ihc (G Aysy AU —dF Aysy Ay A)—3mi Aysy Ay A Y (4.12)
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where ¢ = ,,0", vsy = vsv.0", v = v.0", & = §,6“. For ¢, i one supposes supplemen-
tary conditions:
Ing=¢al=0 (4.12a)

where [ = y*n,. _ _

Now we pass from ¢, ¢ to ¥, ¥ and from d to £. In this way one generalises the
minimal coupling scheme. (Classically we should pass from d to d;.) Thus one easily
writes

LW, ¥, D) =5ihc (VAT osTADY - DU AT, sTAW) —3m U AT, sTAT AT
(4.13)

where ['=T,60", I'sj4s, [ =T1450,8%, ¥ =V,0% [=[n/2] (for details see appendix),
and supplementary conditions

INV=TAl=0 (4.13a)

where [ =T 7"
Using (4.9) one easily gets
L32(¥, U, D)= L32(¥, ¥, D) +1(VGh/4c)[H*"* W,T, [T, T, 1¥
+2H* (U, T, [T ¥, + ¥, [, T, ¥, -, ', T ¥,)n  (4.14)
and

WGh/c =2%1,q/Va=0.95%x10"% cm(q) (4.15)

where I, is Planck’s length, a the fine structure constant, and q elementary charge.
If one performs the dimensional reduction (3.6) for %5,,(\¥, ¥, 2) one easily gets
(see appendix)

dimensionai 20~/

La2(V, ¥, D) Y Lt b, D). (4.16)
i1

reduction

Thus one obtains the interaction between the %-spinor fields ¢, i=1,2,..., 2072 and
gravitation and Yang-Mills fields in a classical way already known. It is worth noticing
that all 3-fermions ¢; have the same mass m.

Now we turn to the new term in (4.14). In Kalinowski (1981b) one deals with the
five-dimensional (electromagnetic) case and interprets this term as the interaction of
the electromagnetic field with a dipole electric moment for 3-spinor fields of value
2¢el,q/ Va. Now we deal with Yang-Mills fields and should work with concrete useful
representations of I'*. We will consider the cases n =2/ and n =2/ + 1 separately.

If we suppose that the group G is a gauge group which unifies electromagnetic,
weak and strong interactions, then G has a subgroup U(1) corresponding to electromag-
netic interactions after breaking the symmetry. Let dim G =2/+1 and let a parameter
of the electromagnetic subgroup U(1) correspond to A = n +4 =2/+5. Then we turn
to the additional term in the Lagrangian (4.14) and perform the dimensional reduction
forb=n+4=2[+5.

One easily gets

iVGh/A)H 31, s(T T[T, T + 28, T2 T, ¥, + 29, T T, 0,
+20, T2 T, ¥, 8, T T, T2 T, 0, )y
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lpl 227 av T .5 A
=2-5q Y F*stny’Gaii
Ya§ o
PR 2{n/2] - s A - 5
HVGH/20F Vates L By ™y yabio + Gy ™y e
+ A[/iuYSYAYa!!/m - %JiAyAYv‘YSYpyawip)n (4 17)

where F*%,,5=F*® (electromagnetic field). Thus we get for all fermions a dipole
electric moment of the order (4.15) as in Kalinowski 1981a, b, e). If dim G =2/ then
this term is forbidden and we do not have the dipole electric moment of the fermion.

5. Rarita~Schwinger equation on manifold P

In this section we consider the generalised Rarita-Schwinger equation derived from
(4.13). It is very well known that the minimal coupling scheme for 3 -spinor fields is
inconsistent, for the Velo-Zwanziger (1969) paradox appears for the electromagnetic
case. The Rarita-Schwinger equation in an external gravitational and electromagnetic
field is relativistic covariant, but solutions are acausal. In this section we avoid these
troubles due to generalised minimal coupling scheme described in § 4.

Now we derive the Euler-Lagrange equation starting from (4.13)

ihelesT A DV —3mT s AT A =0 (5.1

and have the supplementary conditions (4.13a).
Using the definition of & (i.e. (4.9)) one easily gets

Ty sT A DY +IH[H T[T, T, +2H*PT, ' T ¥, + 2H T, T, ¥,

~2H**T"T,I"Tal ¥, Iy =5 TatesT AT AW =0 (5:2)

where
#=vG/4c?, I=[n/2]

and supplementary conditions (4.13a).
If % =0 then (5.2) becoimes the well known Rarita-Schwinger equation in an
external gravitational and Yang-Mills field for (a tower) ¥:

iT2esTA DY —(m/2hc)20sE AT AW =0. (5.3)
Acting on both sides of (5.3) with 9, one obtains
—iteTo o sT A (Q+ Q% S5) AW+ (m>/4he)T 3 sSTAT AT AW =0,

where () is a curvature of a connection w of the bundle P, ﬁ"‘,; is a curvature of a
connection @.g and Q% =dé“s + 6%, A @, and supplementary conditions (4.13a).
Performing dimensional reduction, one obtains

—iticysy AF+ QS 5)0: +(m?/4hc)ysy Ay Ay A =0,
i=1,2,...,2"2 (5.4)
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where F = ¢*()is a Yang-Mills field strength in a gauge ¢ and supplementary conditions
Ing =g A1=0 (5.9

where [/ =vy,n*. Equations (5.3) and (5.4) are not differential equations. They are
algebraic constraints for 3-spinor fields. In this case, for every i, components of iu
are not independent. We must solve (5.2) modulo (5.3).

One expresses dependent components of ¥, by independent ones and substitutes
them into (5.2). Now the properties of (5.2) change drastically. The solutions become
acausal (see Velo and Zwanziger 1969). This indicates that the classical minimal
coupling schema is inconsistent for the Rarita-Schwinger equation.

Let us consider (5.1). Here we have the gauge derivative 9. Acting on both sides
of (5.1) with & one gets, after some algebra,

TAQ+QPS ) AV +IATH T, AT, AV +3AQ°T, A GV
+16AH® Ty AHP T T I T AW —(m? /4R DT ATATAY =0  (5.6)

where H** = H*,%9".

Thus we get a differential equation for ¥ in place of the algebraic constraints (5.3)
(iff O #0). If A —0 one gets, from equation (5.6), equation (5.3). But this transforma-
tion is singular, for A is a coefficient of the highest (first) derivative of ¥ in (4.6). In
this way we avoid troubles with minimal coupling between gauge fields and the 3 -spinor
field. Thus the Velo-Zwanziger paradox is absent. In the case of m = 0 we also avoid
troubles with algebraic constraints obtained from the Rarita-Schwinger equation by
differentiating.

6. Discrete transformations on P

Now let us consider operations of reflections defined on the manifold P. To perform
these we choose a local coordinate system on P

XA=(X* X%, X=X, 1.
Then
V(p)=¥(X*=V(X, 1, X. (6.1)

We define transformations: space reflection I, time reversal 7, charge reflections C
and combined transformations I1C, 4 =ICT in the following way:

VX, X4 = CPH(X*®, -X %) (6.2)
where C7'T',C = —T'%. It is easy to see that
- O C (/2]
C=(: " :|=Cco]]l®& (6.3)
c 0 =

where ©; is a Pauli matrix and C is an ordinary charge conjugation matrix on E (see
appendix). Performing the dimensional reduction (3.6), one gets

$E(X*) = Cy* (X9, i=1,2,..., 2% (6.4)
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or
Yin (X ) = CYlL(X*)

and all colour charges connected with the Yang-Mills field change sign.

In Kalinowski (1981a, e) and Thirring (1972) a similar problem was considered
in the five-dimensional (electromagnetic) case. The reflection in the coordinate X s
was interpreted as an electric charge conjugation (Rayski 1965). For the space
coordinate reflection we have

VX X =T*"V(-X, 1, X°). (6.5)
Performing the dimensional reduction (3.6), one gets (see appendix)
Ui X, D=y (=X, 1), or UL D=7 (=X 1),
i=1,2,...,2"% (6.6)
i.e. a normal parity operator on E. For the transformation of time reversal T we have
VX, X)=CT I X -1 - X°). 6.7)
Performing the dimensional reduction (3.6), one gets (see appendix)
Ui (X, 0 =C'y Yy k(X -), i=1,2,...,2"%
or (6.8)

Vi (X, 0 =C 'y 'y k(X -1

and all colour charges connected with the Yang-Mills field of the gauge group G
(dim G = n) change sign, i.e. a normal time-reversal operator on space-time. For the
transformation 6 = IICT we put

VX, 1, X% =~ W (=X, 1, X°) (6.9)

where [ =[n/2]and [*'*° = y5®HE"=/ 23, (see appendix). Performing the dimensional
reduction (3.6), one gets

WX D=-iv" %=X 1) or Vi (X, D=~y ¢ (=X, 1). (6.10)
For the transformation I1C one gets
VICX, £, X =T*CU*(-X, 1, -X). (6.11)
Performing the dimensional reduction, one gets
WX D=yt -Xn o SR o=yl =X,
i=1,2,...,2"3 (6.12)

and all charges change sign.

It is clear that the transformations obtained here do not differ from those known
from the literature. The additional term in the Lagrangian (4.4) (in the case n =2/ +1)
breaks the symmetry I[1C or T in an analogous way as in the five-dimensional case
(Kalinowski 1981b) and for Dirac fields (Kalinowski 1981a, c, e). This can
be easily seen by acting on the Lagrangian with the operator I1C defined by (6.11).
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Appendix

In this appendix we deal with the Clifford algebra (Atiyah et al 1964, Cartan 1966),
C(1,n +3). Due to decomposition rules for C(1,n +3) we write down a useful
representation for I'* in terms of v,.

It is well known that any Clifford algebra can be decomposed into a tensor product
of the four elementary Clifford algebras (Atiyah er al 1964, Cartan 1966):

C(0, 1) = C, the complex numbers, C(1,0)=R®@R,

C(0, 2) = H = quaternions. (A1)
We have

C(1,n+3)=C(0,2)®C(1,n +1). (A2)

Because we deal with dimensional reduction to the space-time E we define the Clifford
algebra C(1, 3) and we easily obtain

C(1,n+3)-( H ®C(0, 2))®c1 3) =(1j )@C 1,3).  (A3)

It is also well known that either

C1,n+3)=C(1,n+4) iffn+3=21 [eNT
or

C(1,n+2)=C(1,n+3) iffn+3=2/+1, leNT. (Ad4)
Lety,e¥ (CY, u =1, 2,3, 4, be Dirac matrices obeying conventional relations

{Yus v} =210, (AS)
Nur = diag(—=1, -1, -1, +1), ¥s = Y1Y2Y3Ya ys=-1, (A6)
and let &, € £(C*), i = 1, 2, 3 be Pauli matrices obeying conventional relations as well:

{2, 8;}=26 (A7)

(S, S]1= e Cx. (A8)

We also introduce the following notations: le L(C?) is the 2%2 unit matrix and
F € £(C*) is the 4 x 4 unit matrix. Thus one performs on the decomposition (A3) and
easily gets

[r/2]
rﬂzw®( 1 ®@1) (A9)
i=1
or

r“ (A10)
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For A # i one gets (in the case n =2/),

rzp“--m@(:’g:@n)@@@(’ﬁb@l)

t

rz"”:—m@(pﬁz@ n) ®@2®( —ﬁ+1®@1)

i=1 i=1

where 4<2p+1<2p+2=n+4=2(+4,
In the case n = 2/ we also define the matrix

[r+S = 30D H T = (y )®( H Qe ) r2+s

or
rn+5 -

where n =2/, e NT.
If n =2[+1 we have

=14 A=1,2,...,2+4
0 ... ‘ys
I—~n+4 F21+5 . . ¢
y® 0
It is easy to check that
(%2 =-1 and {4, =0 for A#21+5,,
_ [n/2] . _ 1
B=B®( 1 ®@1), v*T=By"B"".
i=1
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