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Abstract. In this paper we deal with $-spinor fields in the framework of the non-abelian 
Klein-Kaluza theory. We introduce a dimensional reduction procedure for a $-spinor 
field and a generalisation of the minimal coupling scheme. We get dipole electric moments 
for a $-spin particle of value cm and PC breaking for a gauge group G with odd 
parameters. Reflections in higher (additional) dimensions were proposed as a conjugation 
of ‘colour’ charges connected with Yang-Mills fields. Our approach avoids the Velo- 
Zwanziger paradox (acausal propagation in an external gauge field). 

1. Introduction 

In this paper we deal with $-spinor fields in the framework of non-abelian Klein-Kaluza 
theories. On an (n +4)-dimensional manifold P (metrised fibre bundle) we have 
introduced one-form spinor fields. These forms are horizontal (in the sense of a 
connection on the bundle P) and take values from the fundamental representation of 
the group SO(1, n +3) (Spin (1, n +3)).  

We assume that this one-form spinor field depends on the group coordinates in a 
trivial way, i.e. by the action of the group G (G is a gauge group of the Yang-Mills 
field which we combine with gravity in the Klein-Kaluza framework). We introduce 
for this one-form spinor field a new kind of gauge derivative. These gauge derivatives 
were defined in Kalinowski (1981a, b, e) in the five-dimensional (electromagnetic) case 
and in Kalinowski (1981~)  for the $-spinor field in the non-abelian case. Here we 
generalise this approach. 

Simultaneously we define a dimensional reduction procedure for the one-form 
spinor field. It contains three steps: 

(1) we take a section of the bundle P and apply it for a one-form spinor field q; 
(2) we restrict the group SO(1, n +3) to S0(1 ,3)  for q; 
(3) we decompose q to one-form spinor fields with values from the Dirac rep- 

resentation of SL(2, C). 
After that we get a tower of 2[”’21 one-form spinor fields on a space-time E. 

We have treated here the $-spinor field as a one-form with values in the Dirac 
representation of SL(2, C) similarly as in Kalinowski (1981b), Isenburg et a1 (1977). 
In Kalinowski (1981a, b, e) a similar construction for the one-dimensional 
(electromagnetic) case was introduced. Here we clarify this construction as a kind of 
dimensional reduction. In Kalinowski (1981b) we presented a similar construction 
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for the $-spinor field. Next we generalise a minimal coupling scheme for a one-form 
spinor field 9. We define on the (n  +4)-dimensional manifold a Lagrangian form 
as in Kalinowski (1981b), Isenburg et a1 (1977). In this Lagrangian we construct a 
new gauge derivative for the one-form spinor field 9. This procedure is a simple 
generalisation of that of Kalinowski (1981b, e), Isenburg eta1 (1977). In the Lagrangian 
new terms appear similar to that of Kalinowski (1981b, e), Isenburg (1977). 
In Kalinowski (1981b, e) such a term was interpreted as the interaction of the dipole 
electric moment of a fermion with the electromagnetic field. Here the interpretation 
is more complex. If we perform the dimensional reduction procedure, we get on E 
(space-time) a sum of Lagrangians for all $ fermions from a tower describing the 
interaction of these fermions with gravity and Yang-Mills fields in a classical, already 
known way, plus new terms. These new terms describe interactions of the Yang-Mills 
fields with $-spin fermions from a tower. If the number of group parameters is odd 
(dim G =  n = 21+ 1) some of these terms may be interpreted as the interaction of 
dipole electric moments of fermions with the electromagnetic field. For an even 
number of parameters of the group G (dim G = n = 2E) such terms are absent. Thus 
a dipole electric moment of a fermion is possible only in the case of an even number 
of parameters of the group G. But apart from these terms we also have other terms. 
These terms may be treated as anomalous dipole moments for ‘magnetic’ parts of 
the Yang-Mills field. For an even number of group parameters we have a PC breaking. 
This breaking is obviously very small because the value of the dipole electric moments 
of $-spin fermions is about (cm)q. Similarly as in Kalinowski (1981b, c, e) this 
value depends on fundamental constants only. 

We also consider the Velo-Zwanziger (1969) paradox. It is very well known that 
a minimal coupling scheme is not well defined for the :-spinor field. The Rarita- 
Schwinger equation is relativistic covariant, but solutions are acausal. 

The last property is related to the fact that differential consequences for the 
Rarita-Schwinger equation become algebraic constraints (Velo and Zwanziger 1969). 
These constraints depend on the strength of the electromagnetic (or Yang-Mills) 
field. In this paper we generalise the minimal coupling scheme and use the differential 
forms formalism for the Rarita-Schwinger field. Hence we obtain new terms. These 
terms are some ‘interference’ effects due to the gravitational and Yang-Mills fields 
interacting with the $-spinor field. The existence of these new terms has important 
consequences. Due to this, the first differential consequences for the Rarita-Schwinger 
equation are differential equations. We do not get any algebraic constraints depending 
on the Yang-Mills field. Hence the Velo-Zwanziger paradox is avoided. 

In this paper we also define discrete transformations on P and interpret them as 
operators of parity, time reversal, charge conjugations, PC and PCT. Charge conjuga- 
tions are defined as reflections in n additional dimensions. (gauge dimensions). 

The paper is organised as follows. In 0 2 we describe some elements of the 
non-abelian Klein-Kaluza theory and define geometric quantities which we use 
throughout the paper. In § 3 we deal with the dimensional reduction procedure for 
the $-spinor field. In 0 4 we introduce a generalisation of the minimal coupling scheme 
for the ;-spinor field. We get new terms in the Lagrangian and interpret them. In 
§ 5 we discuss the Velo-Zwanziger paradox and prove that it is absent in our case. 
In § 6 we define a discrete transformation on the manifold P. The appendix is devoted 
to elements of the Clifford algebra which we use in the paper. 

Finally we would like to give some remarks cdncerning § 2 in particular, but also 
important for the whole paper. We employ the concept of a principal fibre bundle 
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P, as a base for another principal bundle P'. This is a general idea of the Klein-Kaluza 
theory. We make P a (pseud0)Riemannian space by defining a metric tensor y on 
P. This is equivalent to defining a metric connection (choice of horizontal subspace 
of T,(P'), h,u E P') in the principal bundle P'-the bundle of linear frames over P as 
a base. The structure group for P is G (the gauge group for the Yang-Mills field), 
while the structure group for P' is GL(n +4,  R), reducible to SO(1, n + 3) ( n  = dim G ) .  
In this case we have two operators of horizontality 'hor' and 'horl'. The first is referred 
to P and the second to P'. Thus this might lead to a misunderstanding. For this 
reason we use throughout the paper only one operator of horizontality, 'hor', with 
respect to a connection on P (none on P'!). Simultaneously we use a classical linear 
metric connection on P as a (pseud0)Riemannian manifold. Due to this all consider- 
ations are simpler. Nevertheless there also exists in the theory a third principal bundle 
P" with a base E (space-time) and the structural group GL(4, R) reducible to SO( 1 ,3)  
(Lorentz group). This is the bundle of linear frames over E as a base. Thus appears 
the third operator of horizontality %or2' referred to P". For simplicity we also use 
on E a classical linear metric (Riemannian) connection. From the physical point of 
view, the author believes that the most important structure here is a gauge structure 
connecting to the Yang-Mills field, i.e. the principal fibre bundle P. The remaining 
structures, the metric tensor and linear connections, are some derivations from this 
fundamental residual structure. In this way the first operator of horizontality 'hor' 
plays a fundamental role. This concept is developed in the paper. 

2. The Klein-Kaluza theory 

Let us introduce the principal fibre bundle P over the space-time E with the structural 
group G and the projection 7, and let w be a connection form on P. Let us suppose 
that (E,  g) is a manifold with a metric tensor g and Riemann connection Gap, where 
g = gm,e" 08'. The signature of g is (- - - +) and e" is a frame on E. Let us introduce 
the natural frame on P :  

e A  = (v*(B"), e" = A U " ) ,  A =constant. (2.1) 
w = w a x ,  is a connection on P. (w" are dual to fundamental fields on P.) The two-form 
of curvature of connection w is 

R = hor dw = $HZyBcL A @"X,, 
R obeys the structural Cartan equation: 

R = d o  ++[U, U ] .  

Bianchi's identity for w is 

hor dCl= 0. 

X ,  E 8 the Lie algebra of G .  (2.2) 

The map e :  E 13 U -+P, so that e o v  = id is ca..;d a cross section. From the physical 
point of view it means choosing the gauge. Thus 

e*w = e*(w"X,> = A",8'"X, 

e*n = e*(n"X,) = +F:$'  A P X ,  
where 

F : ~  = a,& - ayA; + c;~A;A:. 
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X,, a = 1,2,  . . . , dim G = n are generators of the Lie algebra of the group G, 8, and 
[xa, xbl= c ; b x c .  

A covariant derivation on P with respect to U,  dl is defined as follows 

d l q  = hor dV (hor is understood in the sense of U ) .  (2.7) 

This derivation is called 'gauge' derivation, where 9 is for example a one-form field 
(with values in spinor space) on P. It is convenient to introduce the following notations. 
Capital Latin indices A, B, C run 1 ,2 ,3 ,4 ,  . . . , n +4 ,  dim G = n. Lower case Greek 
indices a, p, y, S = 1 , 2 , 3 , 4  and lower case Latin a, 6, c, d = 5 , 6 ,  . . . , n +4.  The bar 
over 8" and wap (i.e. e", Gap)  indicates that both quantities are defined on E. 

Let us now introduce a tensor y = yAsOAOBB on the manifold P in the natural 
way (Trautman 1970, 1971, 1981). Let X ,  Y E  Tta,,(P). 

d The tensor y has signature (- - - +,- -; ~7). hab = C z d C c b  is a Killing tensor on G. 
This tensor has the form n times 

It is clear that the frame BA is partially unholonomic, because 

de" = ~ ( n ~ - i ~ - ~ c ; ~ e ~  ~ e ~ ) + o .  (2.10) 

We also introduce a dual frame 

r(6A) = yAB8B.  

We have tA = (sa, 5,) and according to Trautman (1970) 
9 
COY = 0. 

(2.11) 

(2.12) 

Thus ta are Killing vectors of metric y. 

with respect to wAB (P is treated as a base of P'): 
Let us now define the Riemann connection UAB on P and covariant derivative D 

( D V ) ~ ~  = 0 and DeA = 0. (2.13) 

The solution of (2.13) is 
1 

wap = r*(G?,p) - 4AHap,Ba, 

@ab = = -(2A)-'Cabc8'. 

Wab = = - iAH,,b8 ', 
(2.14) 

UAB is invariant with respect t o  the action of the group G (Trautman 1970). In the 
Klein-Kaluza theory A = 2 e J G / c 2 ,  E' = 1, where G is the gravitational constant and 
c is the velocity of light in a vacuum. This condition originated from consistency 
between equations in the Klein-Kaluza theory and Einstein's equation (Kaluza 1921, 
Lichnerowicz 1955a, Cho 1975). It is worth noting that this condition does not 
determine the sign of A. It was unnoticed in Kalinowski (1981a, e). 
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Now we define the dual Cartan base on E. Let 771234 = (-det g)"' and qmSys be a 

(2.15) 

Details concerning the elements of geometry mentioned here can be found in Trautman 
(1970, 1971, 1980), Kobayashi and Nomizu (1963) and Lichnerowicz (1955b). 

Levi-Civita symbol and 
1 -  77, = A t? A g6q1,pys, 77 = S e "  A qp. 

3. $ spinors and dimensional reduction 

Let us consider the group SO(1, n +3) and its fundamental (complex) representation 
of dimension K = 4 x 2["/21, where [n/2] = 1 for n = 21 or 21 + 1 

(3.1) 

SO(1, n + 3) acts linearly in M('*n+3) ( (n  +4)-dimensional Minkowski space). 

of SO(1, n+3) (Spin(1, n + 3)) defined on M"*3' (Minkowski space). Thus we have 

(Q, X) = dx E SF 
X E Tan(M"'3'). We call Q a one-spinor form. 

(Barut and Rgczka 1977) 

Let Q be the one-form with values in spinor space of a fundamental representation 

(3.2) 

After restriction of g to the subgroup S0(1 ,3)  we obtain a decomposition of DF 

(fundamental representation of Spin(1, n + 3)) 

DF (A)=L(A)  @ . * . O  L(A), A ~ S 0 ( 1 , 3 ) ,  
ISO(1,3' - 

2[n/2' times 

where 

L (A) = D" /2'o'( A) @ D ('*' /''( A). 

is the Dirac representation of S0(1,3) .  
The decomposition (3.2) of the one-spinor form Q has the form 

(3.3) 

where +bi, i = 1,2,  . . , , 2Cn/21 are one-spinor forms belonging to the Dirac representation 
@D'o,'/2'). Thus, due to the decomposition (3.3) we get a tower of 

one-spinor forms. 
More precisely, we deal with representations of Spin(1, n t 3 )  and Spin(l,3) 2: 

SL(2, e). Let us turn to a manifold P. It is a metric manifold (P, y )  with a metric 
tensor y. At every point p E P a tangent space T,(P) =M(1*n+3'. Let q be a horizontal 
one-form spinor field defined on P. Then 

(U, X): P + C K ,  K = 4 x 2in/21, (Q, ver(X)) = 0, X E tan(P). 

For the one-form spinor field 9 we suppose the following action of the group G: 

(L = ~ " 0 '  

Q(pg1) = G(g;l)wp) (3.5) 
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where p = ( x ,  g)EP, g, glEG. 6 is a representation of the group G in 4 x  
2["/23-dimensional complex space, x E P. If we take a section e : E - P we get a one-form 
spinor field 9 ( e ( x ) )  on the manifold E (space-time). Thus at every point x E E  we 
have after restriction to S0(1 ,3)  the one-spinor form 'Plso(1,3), and for this the 
decomposition (3.4) is valid. Thus 

(3.6) 

One-form spinor fields &(x), i = 1 , 2 , .  . . , 2rn'27 are one-form spinor fields at every 
point x E E belonging to the Dirac representation L = D'o~1/2 'OD(1/2~o)  . We will call 
such a procedure the dimensional reduction for one-form spinor fields. In this way 
we have a tower of one-form spinor fields on E. The following graph symbolises this: 

restriction decomposition 1 !l 
to S 0 ( 1 , 3 )  

9 - e*Y- (e  *9) - 
section of P from SO(1, n+3) lSO(1.3) 

*2i"/21, 

In Kalinowski (1981a, 1982) we dealt in a similar context, with the five-dimensional 
(electromagnetic) case (G = U(1), n = 1). Thus we have the de Sitter group S0(1,4) ,  
and we dealt with the one-form spinor 9 belonging to the fundamental representation 
of the group Spin(l,4) = Sp(2,2). But for this case we have dim DF = dim DLo(1.3) 

and after dimensional reduction we get only one one-form spinor field on E. The 
procedure (3.7) explains a construction given in Kalinowski (1981b, e). It is easy to 
see that 

Y= YwV and rLi = * iw e", i = 1, 2 , .  . . , Wrn'21, 

Thus the one-form $i describes the $-spinor field on E (Deser and Zumino 1976), 
Y unifies a tower of one-forms +bi, i.e. a tower of $-spinor fields. (In Isenburg et a1 
(1977) it was pointed out that ?-spinor fields on E should be treated as one-form 
spinor fields.) 

4. $-spinor field on P 

Let Y be a one-form spinor field on P belonging to the fundamental representation 
DF of SO(1, n +3)  (Spin(1, n +3)), and let TA, A = 1,2,  . . . , n + 4  be a representation 
of generators of the Clifford algebra for SO(1, n + 3) acting in the space representation 
of D~ (i.e. rA E ~ ( 1 ,  n + 3)) 

{rA, rB) = 2fABi rA E 2(ck), K = 4 x 2["/21, [nPI = 1, (4.1) 

where &B = diag(-1, -1, -1,1, -1 . . . -1). We introduce a one-form spinor field 9: 
n times 

9 = Y+B 

where + is Hermitian conjugation and 
ru+ = Brag-' .  

(4.2) 

(4.3) 
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It is easy to see that 

q'(Pg1) = W"(g1) (4.4) 

where p E (X, g )  E P, g, g, E G, G is a unitary representation of the group G acting in 
4~2~" '~~-d imens iona l  complex space, G&'(Ck), The one-form fields 9 and q are 
defined on P and P is assumed to have an orthogonal coordinate system BA.  This 
coordinate system is in general non-holonomic. 

We perform an infinitesimal change of frame B A  

,gA '=eA+aeA=6A-E$gB,  EAB + EBA = 0. (4.5) 

9' = + 8 9  = v - E A B & A B v ,  P=Q+ sQ= 9 + QGABEAB,  (4.6) 
where G A B  = $ [ F A ,  r B ] .  

@ on P with respect to WAB. We obtain 

Suppose that the field 9 corresponds to B A  and 9' to BA';  then we obtain 

Now we consider covariant exterior derivatives of one form spinor fields 9 and 

Dq=dq+WAB&AB A q ,  D'Z".dq-wAB A'&AB. (4.7) 
In Kalinowski (1981b, e) we introduced a new kind of 'gauge' derivative for the 
five-dimensional case. Now we generalise the approach to an arbitrary gauge group 
G: 

(4.8) 
gT=hhor D ~ = ~ ~ ~ - F ~ O ~ ( W ~ ~ ) G A B  A * ,  

9q = hor D q  = d l q  - hor(WAB) A *&AB. 

Horizontality is understood in the sense of a connection w on a bundle P. 

BY = &4"4f iAH",b[r,, r b ] B Y  A q, 

Using (2.14) one obtains 

9@= $q+$AH",bBY Aq[F,, F,], (4.9) 

where 
$q = hor Oq, g @  = hor O q .  (4.10) 

I) is an exterior covariant derivative with respect to W,@ (on E). $ is the normal gauge 
derivative and generally covariant derivative with respect to Gap. It describes the well 
known minimal coupling scheme between the -spinor field, gravitational field and 
Yang-Mills field. 

It is easy to see that these new 'gauge' derivatives induce on P a new connection 
(P is understood as a base of P') 

&AB = hOr(WAB). (4.1 1) 

We work with (;AB rather than with WAB. In Kalinowski (1981b, e), due to these 
gauge derivatives one got the dipole electric moment of the fermion and avoided well 
known troubles (Thirring 1972). (Planck's mass term in Dirac's equation). The 
connection &As has many interesting features. In Kalinowski (1981d) it was proved 
that a scalar of curvature for &AB is the sum of scalars of curvature for WaB (on E) 
and -.&42h,pa""F~, (the Lagrangian of the Yang-Mills field for the gauge group G). 

For WAB we get in addition an enormous cosmological term (Cho 1975). For the 
?-spinor field on E we have the Lagrangian four-form (Isenburg era1 1977, Kalinowski 
198 1 b). 

=%&, $, d) = $ihc($ A Y ~ Y  A drl, -d$ A Y ~ Y  A Y A )-h$ A Y ~ Y  A Y A rl, (4.12) 
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where 1/1 = +”8”, ys y = ys y$, y = y,8”, 6 = &”I?. For I), 6 one supposes supplemen- 
tary conditions: 

I A + = J I A I = O  ( 4 . 1 2 ~ )  

where I = ywvr .  
Now we pass from +, & to q, q and from d to 9. In this way one generalises the 

minimal coupling scheme. (Classically we should pass from d to dl.) Thus one easily 
writes 

2 3 / 2 ( q ,  q, 9) = $ h c ( q  A r2,+5r A 9q- W P  A rZ1+d- A 

(4.13) 

where r = r,$’, r21+s, r = r21+5rFeLL, V = VFew, 1 = [ n / 2 ]  (for details see appendix), 
and supplementary conditions 

I A Q = ~ A I = O  ( 4 . 1 3 ~ )  

- +m+ A rZ1+d- A r A 9 

and 

2 J G / c  = 2 x l , ,q/Ji= 0.95 x cm(q) (4.15) 

where I,, is Planck’s length, cy the fine structure constant, and q elementary charge. 
If one performs the dimensional reduction (3.6) for 23,2( ’P,  9, g )  one easily gets 

(see appendix) 

(4.16) 

Thus one obtains the interaction between the $-spinor fields tjli, i = 1,2,  . . . , 2[n/2’ and 
gravitation and Yang-Mills fields in a classical way already known. It is worth noticing 
that all $-fermions 1,6~ have the same mass m. 

Now we turn to the new term in (4.14). In Kalinowski (1981b) one deals with the 
five-dimensional (electromagnetic) case and interprets this term as the interaction of 
the elecEomagnetic field with a dipole electric moment for $-spinor fields of value 
2slplq/ Ja. Now we deal with Yang-Mills fields and should work with concrete useful 
representations of rA. We will consider the cases n = 21 and n = 21 + 1 separately. 

If we suppose that the group G is a gauge group which unifies electromagnetic, 
weak and strong interactions, then G has a subgroup U( 1) corresponding to electromag- 
netic interactions after breaking the symmetry. Let dim G = 21 + 1 and let a parameter 
of the electromagnetic subgroup U(1) correspond to A = n + 4  = 21 + 5. Then we turn 
to the additional term in the Lagrangian (4.14) and perform the dimensional reduction 
for b = n + 4  = 21 + 5 .  

One easily gets 

i ( J G ~ / 4 c ) ~ * ~ ~ , + ~ ( ~ ~ r ~ ~ + ~ [ r , ,  rv]W + 2 q h r 2 1 + s r A r , q v  + 2~Ar2’+srAruqv 
+ 2 ~ v r 2 1 + s r A  rmqA - qArA rvr2’+5rPr,~P)77 
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2["/21 

i = l  
+ i(JG/2c)FPv21+5 1 ($iAy5yAyn$iv +$iAY5yAYn$iv 

+ $ivY5yAyn$iA -$$iA~A\y~Y5ypya$ip)~ (4.17) 

where FOL821+5 =Fa' (electromagnetic field). Thus we get for all fermions a dipole 
electric moment of the order (4.15) as in Kalinowski 1981a, b, e). If dim G = 21 then 
this term is forbidden and we do not have the dipole electric moment of the fermion. 

5. Rarita-Schwinger equation on manifold P 

In this section we consider the generalised Rarita-Schwinger equation derived from 
(4.13). It is very well known that the minimal coupling scheme for :-spinor fields is 
inconsistent, for the Velo-Zwanziger (1969) paradox appears for the electromagnetic 
case. The Rarita-Schwinger equation in an external gravitational and electromagnetic 
field is relativistic covariant, but solutions are acausal. In this section we avoid these 
troubles due to generalised minimal coupling scheme described in § 4. 

Now we derive the Euler-Lagrange equation starting from (4.13) 

i ~ c r ~ ~ + ~ r ~ ~ a . \ ~ r - ~ m r ~ ~ + ~ r ~ r  A ~ = O  (5.1) 

and have the supplementary conditions (4 .13~) .  

ir21+5r A Gq+i,x[HOLvbrb[ra, rv]qA + 2HapbrbrArOLqP + 2 ~ ~ ~ ~ r ~ r ~ ~ , ~ ,  

Using the definition of 9 (i.e. (4.9)) one easily gets 

m 
2Ac - 2 ~ ~ ~ ~ r ~ r ~ r ~ r , r ~ q ~ ] ~ ~  ----r21+5r A r A Y  = o (5.2) 

where 

x = JG/4c2,  1 = [n/2] 

and supplementary conditions (4 .13~) .  

external gravitational and Yang-Mills field for (a tower) q: 
If X =  0 then (5.2) becomes the well known Rarita-Schwinger equation in an 

(5.3) ir21+5r A @P - ( m / 2 h ~ ) r , ~ + ~ r  A r A q = 0. 

- i ~ c r ~ ~ + ~ r ~  ( ~ + a ~ ~ ~ ~ ~ ) ~ ~ + ( m ~ / 4 ~ ~ ) r ~ ~ + ~ r ~ r  A ~ A Y = O ,  

Acting on both sides of (5.3) with B, one obtains 

where R is a curvature of a connection w of the bundle P, ai*' is a curvature of a 
connection G,, and fin8 = dGu8 +Gay A GyB, and supplementary conditions (4 .13~) .  

-ihcysy A ( F + ~ ~ ~ ' C Z ~ ~ ) I / / ~  +(m2/4hc)y5y A y A y A $i = 0, 

Performing dimensional reduction, one obtains 

i = 1 , 2 , .  . . , 2[n/21 
9 (5.4) 
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where F = e*R is a Yang-Mills field strength in a gauge e and supplementary conditions 

1 A = & A 1 = O  ( 5 . 5 )  

where 1 = yclq@. Equations (5.3) and (5.4) are not differential equations. They are 
algebraic constraints for $-spinor fields. In this case, for every i, components of t,hir 
are not independent. We must solve (5.2) modulo (5.3). 

One expresses dependent components of Ww by independent ones and substitutes 
them into (5.2). Now the properties of (5.2) change drastically. The solutions become 
acausal (see Vel0 and Zwanziger 1969). This indicates that the classical minimal 
coupling schema is inconsistent for the Rarita-Schwinger equation. 

Let us consider (5.1). Here we have the gauge derivative 9. Acting on both sides 
of (5.1) with 9 one gets, after some algebra, 

r A ( R + ~ N 8 ~ a p ) A \ + t h ~ H N b r b A r r a  A W + i A f i b r b  A G W  

+&A2Habrb A HPar,rarrp A W- (m2/4 t i2~Z) r  A r A r A w = o (5.6) 

where Hab = HN,bOy. 
Thus we get a differential equation for W in place of the algebraic constraints (5.3) 

(iff R # 0). If A -0 one gets, from equation (5.6), equation (5.3). But this transforma- 
tion is singular, for A is a coefficient of the highest (first) derivative of W in (4.6). In 
this way we avoid troubles with minimal coupling between gauge fields and the :-spinor 
field. Thus the Velo-Zwanziger paradox is absent. In the case of m = 0 we also avoid 
troubles with algebraic constraints obtained from the Rarita-Schwinger equation by 
differentiating. 

6. Discrete transformations on P 

Now let us consider operations of reflections defined on the manifold P. To perform 
these we choose a local coordinate system on P 

X A = ( X " , X U ) ,  xa = (X, t ) .  

\ ( p )  = W(XA) = W((X, t ) ,  X " ) .  

Then 

(6.1) 

We define transformations: space reflection ll, time reversal T, charge reflections C 
and combined transformations IIC, 6 = IlCT in the following way: 

WC(X*, XU) = cW*(xa, -XU) (6.2) 

where (?'I'@C = --I';. It is easy to see that 

where GI is a Pauli matrix and C is an ordinary charge conjugation matrix on E (see 
appendix). Performing the dimensional reduction (3.6), one gets 

(6.4) 2[n/21 &X") = C$? ( X " ) ,  i = 1 , 2 , .  . . , 
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or 

rLiF (X" = c$$ (X" ) 

and all colour charges connected with the Yang-Mills field change sign. 
In Kalinowski (1981a, e) and Thirring (1972) a similar problem was considered 

in the five-dimensional (electromagnetic) case. The reflection in the coordinate X 5  
was interpreted as an electric charge conjugation (Rayski 1965). For the space 
coordinate reflection we have 

qn(xa, x")  = r4q(-X, t, x").  (6.5) 

Performing the dimensional reduction (3.6), one gets (see appendix) 

4Y(X* t )  = r44i(--r?, t ) ,  or +GcX, t ) = ~ ~ + i p ( - - X ,  t ) ,  

7 (6.6) i = 1,2,  . . , , 

i.e. a normal parity operator on E. For the transformation of time reversal T we have 

(6.7) 

2rn/21 

q T ( X ,  t, xu) = Pr*r2r3q*(X - t -x"). 
Performing the dimensional reduction (3.6), one gets (see appendix) 

1 1 2 3 *  p 2 7  ~ T ( x  t )  = C -  Y Y Y 4i (-R - t ) ,  i = 1 , 2 , .  . . , 9 

and all colour charges connected with the Yang-Mills field of the gauge group G 
(dim G = n )  change sign, i.e. a normal time-reversal operator on space-time. For the 
transformation 6 = IICT we put 

V ( X ,  t, x") = -iP+%(-X, t, x") (6.9) 

where 1 = [n/2] and r21t5 = y'@n\"=/:' Gl (see appendix). Performing the dimensional 
reduction (3.6),  one gets 

$ , B ( x ,  t )  = - i ~ ~ 4 ~ ( - X ,  t )  or J / ~ ( x ,  t )  = - i ~ ~ 4 ~ & ( - X ,  t ) .  (6.10) 

For the transformation IIC one gets 

qyx, t, X " )  = PCF*(--X, t, -X") .  (6.11) 

Performing the dimensional reduction, one gets 

(L"(X, t )  = y4c*T (-x, t )  or 4EC(X, t )  = r"47 (--x, t ) ,  

f (6.12) 2rn/21 i = 1,2,  . . . , 
and all charges change sign. 

It is clear that the transformations obtained here do not differ from those known 
from the literature. The additional term in the Lagrangian (4.4) (in the case n = 21 + 1) 
breaks the symmetry IIC or T in an analogous way as in the five-dimensional case 
(Kalinowski 1981b) and for Dirac fields (Kalinowski 1981a, c, e). This can 
be easily seen by acting on the Lagrangian with the operator l7C defined by (6.11). 
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Appendix 

In this appendix we deal with the Clifford algebra (Atiyah et al 1964, Cartan 1966), 
C(1, n +3). Due to decomposition rules for C(1, n +3) we write down a useful 
representation for rA  in terms of yfi. 

It is well known that any Clifford algebra can be decomposed into a tensor product 
of the four elementary Clifford algebras (Atiyah et a1 1964, Cartan 1966): 

C(0, l )  = @, the complex numbers, C(l,O)= ROR, 
C(0,2) = H = quaternions. 

C(l ,  n +3) = C(O,2)@C(1, n + 1). 

(AI) 

042) 
Because we deal with dimensional reduction to the space-time E we define the Clifford 
algebra C(1,3) and we easily obtain 

We have 

It is also well known that either 

C(1, n +3) =C(1, n +4) iff n+3=21, LEN? 

or 

C ( l , n + 2 ) = C ( l , n + 3 )  iff n + 3 = 2 l + 1 ,  I E N?. (A41 

= 1,2,3,4,  be Dirac matrices obeying conventional relations 

{YW Y Y I  = 2%, (A51 

(-46) 

and let Gi E 3(C4), i = 1 , 2 , 3  be Pauli matrices obeying conventional relations as well: 

{Gi, Gj} = 2si,, 647) 

[Ei, Gj] = & i j k E k .  (A8) 

We also introduce the following notations: U E % ( @ ~ )  is the 2 x 2  unit matrix and 
9 E LE?(C4) is the 4 x 4 unit matrix. Thus one performs on the decomposition (A3) and 
easily gets 

Let yfi 

2 qvy =diag(-1, -1, -1, + l ) ,  Y5 = YlY2Y3Y4, Y5 = -1, 

or 
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For A # p one gets (in the case n = 21), 

where 4 < 2p + 1 < 2p + 2  G n + 4  = 21 +4 .  
In the case n = 21 we also define the matrix 

or 

where n = 21, 1 E NT.  
If n = 21 + 1 we have 

FA = TA,  A = 1 , 2 , .  . . , 2 l + 4  
5 

p . + + 5 = [ y s  0 . . . .  . . y 0 1. 
It is easy to check that 

( r 2 1 + 5 ) 2  = -1 and ifA, r21+s) = 0 for A # 21 + 5,, 
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